Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.129
Filtrar
1.
Sci Rep ; 14(1): 9144, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644378

RESUMO

In this research, different Co2+ doped ZnO nanoparticles (NPs) were hydrothermally synthesized by an environmentally friendly, sustainable technique using the extract of P. capillacea for the first time. Co-ZnO was characterized and confirmed by FTIR, XPS, XRD, BET, EDX, SEM, TEM, DRS UV-Vis spectroscopy, and TGA analyses. Dislocation density, micro strains, lattice parameters and volume of the unit cell were measured using XRD results. XRD suggests that the average size of these NPs was between 44.49 and 65.69 nm with a hexagonal wurtzite structure. Tauc plot displayed that the optical energy bandgap of ZnO NPs (3.18) slowly declines with Co doping (2.96 eV). Near complete removal of the ciprofloxacin (CIPF) antibiotic was attained using Green 5% of Hy-Co-ZnO in the existence of visible LED light which exhibited maximum degradation efficiency (99%) within 120 min for 30 ppm CIPF initial concentration. The photodegradation mechanism of CIPF using Green Hy-Co-ZnO NPs followed the Pseudo-first-order kinetics. The Green Hy-Co-ZnO NPs improved photocatalytic performance toward CIPF for 3 cycles. The experiments were designed using the RSM (CCD) method for selected parameters such as catalyst dosage, antibiotic dosage, shaking speed, and pH. The maximal CIPF degradation efficiency (96.4%) was achieved under optimum conditions of 39.45 ppm CIPF dosage, 60.56 mg catalyst dosage, 177.33 rpm shaking speed and pH 7.57.


Assuntos
Antibacterianos , Ciprofloxacina , Cobalto , Luz , Fotólise , Óxido de Zinco , Óxido de Zinco/química , Ciprofloxacina/química , Cobalto/química , Antibacterianos/química , Nanopartículas Metálicas/química , Química Verde/métodos , Nanopartículas/química , Cinética , Catálise
2.
Chemosphere ; 355: 141763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522672

RESUMO

The fluoroquinolones ciprofloxacin, danofloxacin, enoxacin, levofloxacin and lomefloxacin, occur in water bodies worldwide and therefore pose a threat to the aquatic environment. Advanced purification procedures, such as electrochemical oxidation, may act as a remedy since they contribute to eliminating contaminants and prevent micropollutants from entering open water bodies. By electrochemical treatment in a micro-flow reactor equipped with a boron-doped diamond (BDD) electrode, the fluoroquinolones were efficiently degraded. A total of 15 new products were identified using high-performance high-resolution chromatography coupled with high-resolution multifragmentation mass spectrometry. The ecotoxicity of the emerging transformation products was estimated through in silico quantitative structure activity relationship analysis. Almost all transformation products were predicted less ecotoxic than the initial compounds. The fluoroquinolone degradation followed three major mechanisms depending on the voltage during the electrochemical oxidation. At approximately 1 V, the reactions started with the elimination of molecular hydrogen from the piperazine moiety. At approx. 1.25 V, methyl and methylene groups were eliminated. At 1.5 V, hydroxyl radicals, generated at the BDD electrode, led to substitution at the piperazine ring. This novel finding of the three reactions depending on voltage contributes to the mechanistic understanding of electrochemical oxidation as potential remedy against fluoroquinolones in the aquatic environment.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Levofloxacino/análise , Enoxacino/análise , Diamante/química , Fluoroquinolonas/análise , Piperazina , Oxirredução , Eletrodos , Água , Poluentes Químicos da Água/análise
3.
Environ Sci Pollut Res Int ; 31(16): 23924-23941, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430437

RESUMO

In response to the escalating concerns over antibiotics in aquatic environments, the photo-Fenton reaction has been spotlighted as a promising approach to address this issue. Herein, a novel heterogeneous photo-Fenton catalyst (Fe3O4/WPC) with magnetic recyclability was synthesized through a facile two-step process that included in situ growth and subsequent carbonization treatment. This catalyst was utilized to expedite the photocatalytic decomposition of ciprofloxacin (CIP) assisted by H2O2. Characterization results indicated the successful anchoring of MIL-101(Fe)-derived spindle-like Fe3O4 particles in the multi-channeled wood-converted porous carbon (WPC) scaffold. The as-synthesized hybrid photocatalysts, boasting a substantial specific surface area of 414.90 m2·g-1 and an excellent photocurrent density of 0.79 µA·cm-2, demonstrated superior photo-Fenton activity, accomplishing approximately 100% degradation of CIP within 120 min of ultraviolet-light exposure. This can be attributed to the existence of a heterojunction between Fe3O4 and WPC substrate that promotes the migration and enhances the efficient separation of photogenerated electron-hole pairs. Meanwhile, the Fe(III)/Fe(II) redox circulation and mesoporous wood carbon in the catalyst synergistically enhance the utilization of H2O and accelerate the formation of •OH radicals, leading to heightened degradation efficiency of CIP. Experiments utilizing chemical trapping techniques have demonstrated that •OH radicals are instrumental in the CIP degradation process. Furthermore, the study on reusability indicated that the efficiency in removing CIP remained at 89.5% even through five successive cycles, indicating the structural stability and excellent recyclability of Fe3O4/WPC. This research presented a novel pathway for designing magnetically reusable MOFs/wood-derived composites as photo-Fenton catalysts for actual wastewater treatment.


Assuntos
Carbono , Compostos Férricos , Estruturas Metalorgânicas , Compostos Férricos/química , Ciprofloxacina/química , Peróxido de Hidrogênio/química , Porosidade , Madeira , Catálise
4.
J Colloid Interface Sci ; 663: 909-918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447405

RESUMO

Peroxymonosulfate (PMS) is widely employed to generate oxygen-containing reactive species for ciprofloxacin (CIP) degradation. Herein, cobalt oxyhydroxide @activated carbon (CoOOH@AC) was synthesized via a wet chemical sedimentation method to activate PMS for degradation of CIP. The result suggested AC can support the vertical growth of CoOOH nanosheets to expose high-activity Co-contained edges, possessing efficient PMS activation and degradation activity and catalytic stability. In the presence of 3.0 mg of optimal CoOOH@AC and 2 mM PMS, 96.8 % of CIP was degraded within 10 min, approximately 11.6 and 9.97 times greater than those of CoOOH/PMS and AC/PMS systems. Notably, it was disclosed that the optimal CoOOH@AC/PMS system still exhibited efficient catalytic performance in a wide pH range, different organics and common co-existing ions. Quenching experiments and electron paramagnetic resonance indicated that both radical and non-radical processes contributed to the degradation of CIP, with 1O2 and direct electron transfer accounting for the non-radical pathway and SO4•- and •OH serving as the main radical active species. Finally, possible CIP degradation pathways were proposed based on high-performance liquid chromatography-mass spectrometry. This study provided an alternate method for wastewater treatment based on PMS catalyzed by cobalt-based hydroxide.


Assuntos
Carvão Vegetal , Ciprofloxacina , Hidróxidos , Óxidos , Ciprofloxacina/química , Peróxidos/química , Cobalto/química , Espécies Reativas de Oxigênio
5.
Chemosphere ; 352: 141396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346519

RESUMO

The wide use of the fluoroquinolone antibiotic ciprofloxacin (CIP), combined with its limited removal in wastewater treatment plants, results in a dangerous accumulation in natural water. Here, the complete degradation of CIP by photoelectrocatalysis (PEC), using an FTO/ZnO/TiO2/Ag2Se photoanode that is responsive to blue light, has been investigated. A slow antibiotic concentration decay was found in 0.050 M Na2SO4 under the oxidizing action of holes and OH photogenerated at the anode surface. The degradation was strongly enhanced in 0.070 M NaCl due to mediated oxidation by electrogenerated active chlorine. The latter process became faster at pH 7.0, with total abatement of CIP at concentrations below 2.5 mg L-1 operating at a bias potential of +0.8 V. The performance was enhanced when increasing the anodic potential and decreasing the initial drug content. The use of solar radiation from a simulator was also beneficial, owing to the greater lamp power. In contrast, the electrochemical oxidation in the dark yielded a poor removal, thus confirming the critical role of oxidants formed under light irradiation. The generation of holes and OH was confirmed from tests with specific scavengers like ammonium oxalate and tert-butanol, respectively. The prolonged usage of the photoanode affected its performance due to poisoning of its active centers by degradation by-products, although a good PEC reproducibility was obtained upon surface cleaning.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Antibacterianos/química , Água , Reprodutibilidade dos Testes , Luz , Poluentes Químicos da Água/análise , Eletrodos , Oxirredução
6.
Int J Pharm ; 654: 123949, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417723

RESUMO

The treatment of chronic respiratory infections caused by biofilm formation are extremely challenging owing to poor drug penetration into the complex biofilm structure and high drug resistance. Local delivery of an antibiotic together with a non-antibiotic adjuvant to the lungs could often enhance the therapeutic responses by targeting different bacterial growth pathways and minimizing drug resistance. In this study, we designed new inhalable dry powders containing ciprofloxacin (CIP) and OligoG (Oli, a low-molecular-weight alginate oligosaccharide impairing the mucoid biofilms by interacting with their cationic ions) to combat respiratory bacterial biofilm infections. The resulting powders were characterized with respect to their morphology, solid-state property, surface chemistry, moisture sorption behavior, and dissolution rate. The aerosol performance and storage stability of the dry powders were also evaluated. The results showed that inhalable dry powders composed of CIP and Oli could be readily accomplished via the wet milling and spray drying process. Upon the storage under 20 ± 2 °C/20 ± 2 % relative humidity (RH) for one month, there was no significant change in the in vitro aerosol performances of the dry powders. In contrast, the dry powders became non-inhalable following the storage at 20 ± 2 °C/53 ± 2 % RH for one month due to the hygroscopic nature of Oli, which could be largely prevented by incorporation of leucine. Collectively, this study suggests that the newly developed co-spray-dried powders composed of CIP and Oli might represent a promising and alternative treatment strategy against respiratory bacterial biofilm infections.


Assuntos
Ciprofloxacina , Infecções Respiratórias , Humanos , Ciprofloxacina/química , Administração por Inalação , Pós/química , Aerossóis e Gotículas Respiratórios , Infecções Respiratórias/tratamento farmacológico , Oligossacarídeos , Tamanho da Partícula , Inaladores de Pó Seco/métodos
7.
Chemosphere ; 353: 141503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382718

RESUMO

Recently, water contamination caused by the misuse of antibiotics has become a growing concern. In this study, an economical chitin/calcite composite (CCA) was extracted from crab shell waste, and the effects and mechanisms of its removal of ciprofloxacin (CIP) and tetracycline (TC) from aqueous solution were investigated. The functional groups of chitin and the metal phase of calcite gave CCA the ability to remove antibiotics. Experiments on kinetics, isothermal adsorption, thermodynamics, co-removal, and reusability were conducted to systematically explore the adsorption performances of CCA toward antibiotics. The pseudo-second-order (FSO) and Langmuir models suited the data obtained from experiments best and displayed a good fit for the chemisorption and a certain homogeneity of adsorption sites. At 25 °C, the maximum adsorption capacities (Qmax) toward CIP and TC were 228.86 and 150.76 mg g-1, respectively. The adsorption mechanisms of CCA with TC and CIP are pH dependent since pH can affect the surface charge of CCA and the form in which CIP and TC are existing. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) demonstrated that the keto-O and carboxyl groups of CIP and the carbonyl, hydroxyl, and amido groups of TC could be responsible for the binding with the calcite and the functional groups of chitin through surface complexation, cation bridge and hydrogen bonding.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Carbonato de Cálcio , Quitina , Antibacterianos/química , Tetraciclina/química , Poluentes Químicos da Água/análise , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Chemosphere ; 351: 141128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185424

RESUMO

Photocatalytic water purification has been extensively explored for its economic, eco-friendly, and sustainable aspects. In this study, tungsten (W) incorporated BaSn1-xWxO3 (x = 0 to 0.05) nanoparticles synthesized by facile hydrogen peroxide precipitation route has been demonstrated for photocatalytic degradation of methylene blue (MB) dye and ciprofloxacin (CIP) antibiotic. The structural analysis indicates the presence of hybrid composite-like nanostructures with reduced crystallinity. Optical studies reveal blueshift in bandgap and decrease in oxygen vacancy defects upon W-incorporation. Pure BaSnO3 shows overall enhanced photocatalytic activity towards MB (90.22%) and CIP (78.12%) after 240 min of white LED light and sunlight irradiation respectively. The 2 % W-incorporated BaSnO3 shows superior photocatalytic degradation of MB (26.89%) and CIP (45.14%) within first 30 min of irradiation confirming the presence of W to be beneficial in the process. The free radical study revealed the dominant role of reactive hole (h+) and oxygen radical (O2•-) species during photodegradation and their intermediates are investigated to elucidate the degradation mechanism of MB within 30 min of irradiation. This study is promising towards developing defect mediated and time-efficient photocatalysts for environmental remediation.


Assuntos
Compostos de Cálcio , Ciprofloxacina , Nanopartículas , Óxidos , Titânio , Ciprofloxacina/química , Azul de Metileno/química , Tungstênio/química , Nanopartículas/química
9.
Environ Res ; 242: 117812, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042517

RESUMO

Developing efficient and effective photocatalysts is essential for organic dyes and antibiotic degradation in wastewater. Ni-doped α-Fe2O3/g-C3N4 (NFGCN) photocatalysts were synthesised through a simple co-precipitation technique and used for the ciprofloxacin (CIP) and methylene blue (MB) degradation through photocatalysis. The XRD data indicated the crystallinity of the synthesised iron oxide and its composites with rhombohedral structures with the nature of high purity. The morphology of the NFGCN composite revealed the construction of Ni-doped α-Fe2O3 (NFO) nanoparticles onto the g-C3N4 (GCN) sheet surface along with the close interface that induced a Z-scheme heterojunction. The synthesised photocatalysts showed photocatalytic activity with good degradation efficiency of 82.1 % and 92.0 % for CIP and MB, respectively, within 120 min under solar light exposure. The improved photocatalytic degradation efficiency was attained owing to the synthesised composite's enhanced light absorption in the visible range. The narrow band gap energies and interaction between Ni-doped α-Fe2O3 and g-C3N4 displayed by these materials result in enhanced visible light absorption, effective charge carrier separation and transportation to the pollutants. CIP degradation pathways were investigated utilising the LC-MS analysis. NFGCN composites showed good recyclability (5 cycles), magnetic retrievability, and stability for degrading organic and emerging pollutants from wastewater through photocatalysis.


Assuntos
Poluentes Ambientais , Compostos Férricos , Grafite , Nanocompostos , Compostos de Nitrogênio , Ciprofloxacina/química , Águas Residuárias , Luz , Nanocompostos/química
10.
Environ Res ; 244: 117863, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070857

RESUMO

Metal-organic framework (MOF) and MOF-derived materials have attracted extensive research interest as environmental catalysts. In this study, a composite material (ZIF-67/CCot-8) was successfully prepared using cotton fiber as a substrate and growing ZIF-67 in situ. This material exhibited excellent catalytic performance and significantly improved the efficiency of antibiotics degradation. ZIF-67/CCot-8 at a concentration of 0.05 g/L, combined with 0.2 mM peroxymonosulfate (PMS), removed approximately 97% of ciprofloxacin (CIP) and 99% of tetracycline and sulfamethoxazole within 15 min. The high catalytic efficiency of this catalyst is mainly attributed to the uniform distribution of ZIF-67-derived nanoparticles on the surface of the cotton fibers, providing abundant active sites and thereby significantly enhancing the efficiency of antibiotics degradation. Radical quenching experiments and electron paramagnetic resonance (EPR) analyses revealed that sulfate radicals (SO4•-) and singlet oxygen (1O2) were the main active species. Mass spectrometry (MS) was used to elucidate the CIP degradation pathway. The growth of the roots and stems of soybean sprouts in different water environments (tap water, treated water, and untreated water) was also observed. The results demonstrated a significant improvement in the inhibition of plant growth in the post-degradation CIP solution, indicating a substantial reduction in the toxicity of the degraded aqueous solution. To validate the practicality of the ZIF-67/CCot-8/PMS system, a continuous-flow water-treatment device was designed. This system removed 98% of the CIP solution within 180 min, demonstrating its excellent durability. This study presents a potential pathway for effective antibiotics removal using MOF-derived materials.


Assuntos
Ciprofloxacina , Peróxidos , Ciprofloxacina/química , Peróxidos/química , Água , Antibacterianos
11.
Environ Pollut ; 343: 123178, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38103717

RESUMO

To solve the problem of biochar lack of adsorption sites for heavy metal ions and the difficulty of recycling, CoFe2O4 magnetic nanoparticles confined in nitrogen, sulfur co-doped 3D network biochar matrix (C-CoFe2O4/N,S-BC) was designed and fabricated successfully. The obtained C-CoFe2O4/N,S-BC displays remarkable adsorption performance for both Pb2+ and ciprofloxacin (CIP) removal at the single or binary system due to the role of N,S as metal ion anchoring compared to the N,S-free sample (CoFe2O4/BC). N,S co-doped BC not only participates in adsorption reaction but also effectively inhibites the agglomeration of CoFe2O4 nanoparticles and increases the active sites as a carrier at the same time. In the single system, CoFe2O4/N,S-BC demonstrates a fast adsorption rate (equilibrium time: 30 min) and high adsorption capacity (224.77 mg g-1 for Pb2+, 400.11 mg g-1 for CIP) towards Pb2+ and CIP. The adsorption process is befitted pseudo-second-order model, and the equilibrium data are in great pertinence with Langmuir model. In the binary system, the maximum adsorption capacity of CoFe2O4/N,S-BC for Pb2+ and CIP is 244.80 mg g-1 (CIP: 10.00 mg L-1) and 418.42 mg g-1 (Pb2+: 10.00 mg L-1), respectively. The adsorption mechanism is discussed based on the experimental results. Moreover, C-CoFe2O4/N,S-BC shows good practical water treatment capacity, anti-interference ability and stable reusability (the removal efficiency>80% after eight cycles). The rapid, multifunctional, reusable, and easily separable adsorption properties make C-CoFe2O4/N,S-BC promising for efficient environmental remediation. This study also offers a viable method for the construction of adsorption material for complex wastewater treatment.


Assuntos
Nanopartículas de Magnetita , Poluentes Químicos da Água , Ciprofloxacina/química , Adsorção , Chumbo , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/análise
12.
Chemosphere ; 349: 140972, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114023

RESUMO

Pharmaceutical substances in the ecosystem pose a notable hazard to human and aquatic organism well-being. The occurrence of ciprofloxacin (CIP) within water sources or the food chain can perturb plant biochemical processes and induce drug resistance in both humans and animals. Therefore, effective removal is imperative prior to environmental discharge. This study introduces a Novel Carbohydrate-Based Nanocomposite (Fe3O4/MOF/AmCs-Alg) as a proficient photocatalytic agent for degrading CIP in aqueous solutions. The fabricated nanocomposite underwent characterization using FTIR, XRD, FESEM, DRS, and VSM techniques. The analyses conducted verified the successful synthesis of the Fe3O4/MOF/AmCs-Alg nanocomposite. Utilizing the optimized parameters (pH = 5, nanocomposite dose = 0.4 g/L, CIP concentration = 10 mg/L, light intensity = 75 mW/cm2, and a duration of 45min), the Fe3O4/MOF/AmCs-Alg/Vis nanocomposite demonstrated an impressive CIP degradation efficiency of 95.85%. Under optimal experiment conditions, CIP removal efficiency in tap water and treated wastewater samples was 91.27% and 76.78%, respectively. Furthermore, the total organic carbon (TOC) analysis indicated a mineralization rate of 51.21% for CIP. Trapping studies demonstrated that the superoxide radical (O2°-) had a notable contribution to the breakdown of CIP. In summary, the Fe3O4/MOF/AmCs-Alg/Vis system offers numerous benefits, encompassing effective degradation capabilities, effortless catalyst retrieval, and remarkable nanocomposite reusability.


Assuntos
Ciprofloxacina , Nanocompostos , Humanos , Ciprofloxacina/química , Ecossistema , Água/química , Luz , Nanocompostos/química , Catálise
13.
Environ Monit Assess ; 195(12): 1443, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37945976

RESUMO

Antibiotics are one of the most widely used drug groups. The presence of antibiotics in urban water sources and sewage creates many environmental and medical risks for humans and other living organisms. In this study, the potential of zinc oxide (ZnO) coated on almond shell activated carbon (ACA-ZnO) in removing ciprofloxacin (CIP) from aqueous solutions was investigated. Almond shell was used to make activated carbon. Zinc oxide nanoparticles were prepared by the sol-gel method, and finally, ZnO nanoparticles were bonded to activated carbon. The effect of independent parameters pH, contact time, adsorbent dose, and initial CIP concentration on CIP removal efficiency using ACA-ZnO was investigated by response surface methodology. Optimal removal was obtained at pH = 5.4, CIP initial concentration = 7.4 mg/L, adsorbent dose = 0.82 g/L, and reaction time = 67.3 min. This study followed a quadratic model (R2 = 0.958). The best model of adsorption isotherm fits with the Freundlich model (R2 = 0.9972) and the maximum capacity was 251.42 mg/g adsorption kinetics, and pseudo-second-order kinetic model (R2 = 0.959). The results of this study showed that ACA-ZnO as an adsorbent is very efficient, without environmental side effect and cost-benefit.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Humanos , Antibacterianos/química , Ciprofloxacina/química , Óxido de Zinco/química , Carvão Vegetal , Monitoramento Ambiental , Água/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
14.
PLoS One ; 18(11): e0291342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943851

RESUMO

Infectious diseases caused by bacteria that have become resistant to antibiotics have increased in prevalence, necessitating new methods for their diagnosis and treatment. The aim of this study was to compare the efficacy of synthetic ciprofloxacin to that of organic ciprofloxacin produced by cave microorganisms, as well as to evaluate the feasibility of using organic ciprofloxacin radiolabeled with technetium-99m as an imaging agent. Organic ciprofloxacin produced by cave bacteria isolated from sediment taken from the dark zone of Antalya's "Yark Sinkhole," (Turkey's 14th deepest cave), was purified using high-performance liquid chromatography. Purified organic ciprofloxacin and standard ciprofloxacin were radiolabeled with technetium-99m (99mTc), and their uptake by pathogenic microorganisms as well as potential as an imaging agent were examined. According to thin-layer radiochromatography, radiolabeling efficiencies were 98.99 ± 0.34 (n = 7) and 91.25 ± 1.84 (n = 7) for radiolabeled organic ciprofloxacin and standard ciprofloxacin respectively. The binding efficiency of radiolabeled organic ciprofloxacin at the 240th minute was higher compared with radiolabeled standard ciprofloxacin, especially with P.aeruginosa, MRSA, VRE and E.coli. The results demonstrate that radiolabeling with 99mTc does not alter the biological behavior of organic ciprofloxacin, and radiolabeled organic ciprofloxacin has potential as an imaging agent for the detection of bacterial infection. The original value of the study is the monitoring of the antibiofilm effects of untouched cave-derived organic antibiotics by radiolabeling with a radionuclide.


Assuntos
Ciprofloxacina , Tecnécio , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Tecnécio/química , Compostos Radiofarmacêuticos/química , Cintilografia , Antibacterianos/farmacologia , Escherichia coli/metabolismo
15.
Int J Nanomedicine ; 18: 6449-6467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026518

RESUMO

Introduction: Hybrid nanoflowers are structures consisting of organic (enzymes, proteins, nucleic acids) and inorganic components (mostly metal phosphates) with a flower-like hierarchical structure. Novel hybrid nanoflowers based on bovine serum albumin (BSA) and hydroxyapatite (HA) were obtained and characterized. Study on BSA-HA nanoflowers as potential drug delivery system is reported for the first time. Methods: Embedding ciprofloxacin in the structure of hybrid nanoflowers was confirmed by ATR-FTIR and thermogravimetric analysis. The inorganic phase of the nanoflowers was determined by X-ray diffraction. UV‒Vis spectroscopy was used to evaluate the release profiles of ciprofloxacin from nanoflowers in buffer solutions at pH 7.4 and 5. The agar disk diffusion method was used to study the antibacterial activity of the synthesized nanoflowers against Staphylococcus aureus and Pseudomonas aeruginosa. Results: Bovine serum albumin - hydroxyapatite nanoflowers were obtained with diameters of ca. 1-2 µm. The kinetics of ciprofloxacin release from nanoflowers were described by the Korsmeyer-Peppas model. The antibacterial activity of the synthesized nanoflowers was demonstrated against S. aureus and P. aeruginosa, two main pathogens found in osteomyelitis. Conclusion: The formulated nanoflowers may act as an efficient local antibiotic delivery system. Due to the use of nonhazardous, biodegradable components and benign synthesis, hybrid nanoflowers are very promising drug delivery systems that could be applied in the treatment of skeletal system infections.


Assuntos
Ciprofloxacina , Soroalbumina Bovina , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Staphylococcus aureus , Durapatita/química , Sistemas de Liberação de Medicamentos , Antibacterianos/farmacologia , Antibacterianos/química
16.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894841

RESUMO

This work presents the results of research on obtaining chitosan (CS) films containing on their surface ciprofloxacin (CIP). A unique structure was obtained that not only gives new properties to the films, but also changes the way of coverage and structure of the surface. The spectroscopic test showed that in the process of application of CIP on the surface of CS film, CIP was converted from its crystalline form to an amorphic one, hence improving its bioavailability. This improved its scope of microbiological effect. The research was carried out on the reduction of CIP concentration during the process of CIP adhesion to the surface of chitosan films. The antibacterial activity of the CS films with and without the drug was evaluated in relation to Escherichia coli and Staphylococcus aureus, as well as Candida albicans and Penicillium expansum. Changes in the morphology and roughness of membrane surfaces after the antibacterial molecule adhesion process were tested with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Structural analysis of CS and its modifications were confirmed with Fourier-transform spectroscopy in the infrared by an attenuated total reflectance of IR radiation (FTIR-ATR) and solid-state nuclear magnetic resonance (NMR).


Assuntos
Quitosana , Quitosana/química , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Espectroscopia de Ressonância Magnética
17.
Water Sci Technol ; 88(8): 2174-2188, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906465

RESUMO

Four kinds of manganese oxides were successfully prepared by hydrothermal and redox precipitation methods, and the obtained oxides were used for CIP removal from water by activating PMS. The microstructure and surface properties of four oxides were systematically characterized. The results showed that ε-MnO2 prepared by the redox precipitation method had large surface area, low crystallinity, high surface Mn(III)/Mn(Ⅳ) ratio and the highest activation efficiency for PMS, that is, when the concentration of PMS was 0.6 g/L, 0.2 g/L ε-MnO2 could degrade 93% of CIP within 30 min. Multiple active oxygen species, such as sulfate radical, hydroxyl radical and singlet oxygen, were found in CIP degradation, among which sulfate radical was the most important one. The degradation reaction mainly occurred on the surface of the catalyst, and the surface hydroxyl group played an important role in the degradation. The catalyst could be regenerated in situ through the redox reaction between Mn4+ and Mn3+. The ε-MnO2 had the advantages of simple preparation, good stability and excellent performance, which provided the potential for developing new green antibiotic removal technology.


Assuntos
Ciprofloxacina , Óxidos , Óxidos/química , Ciprofloxacina/química , Compostos de Manganês/química , Peróxidos/química , Oxirredução
18.
Environ Res ; 238(Pt 2): 117196, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778603

RESUMO

Chlorpheniramine (CPM) and Ciprofloxacin (CIP) adsorption onto a granular (GAC) and pelletized activated carbon (PAC) analyzing the physicochemical mechanisms involved using the carbon's characterization were studied. Adsorption isotherm studies were performed at temperatures of 25 °C at pH values of 4, 7 and 9 and at 45 °C at a pH of 7. The characterization demonstrated that GAC has a predominantly acid character due to its predominantly negative surface charge and acidic site concentration alongside the characteristic bands detected in the X-ray Photoemission Spectroscopy (XPS) study. On the other hand, PAC presented a mostly basic character due to its positive surface charge and basic site concentrations. The adsorption isotherm studies demonstrated that the Freundlich isotherm better described the equilibrium data with an average deviation percentage of 7.45 and 6.74 for GAC and PAC. The temperature and desorption studies demonstrated that the adsorption process occurs through a chemisorption mechanism, and the pH study alongside the GAC and PAC characterization demonstrated that the mechanisms involved are a combination of electrostatic interactions and pi-pi interactions between the CPM and CIP molecules and the carbon's surface. These results demonstrate that the adsorption process of these pharmaceutical compounds is done through a combination of physical and chemical interactions.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Carvão Vegetal/química , Clorfeniramina , Poluentes Químicos da Água/química , Cinética , Adsorção
19.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834266

RESUMO

A novel derivative of ciprofloxacin (Cpx) was synthesized and characterized using various analytical techniques, including FT-IR spectroscopy, UV-Vis spectroscopy, TEM and SEM analysis, 1H NMR, 13C NMR, and HPLC analysis. The newly prepared Cpx derivative (Cpx-Drv) exhibited significantly enhanced antibacterial properties compared to Cpx itself. In particular, Cpx-Drv demonstrated a 51% increase in antibacterial activity against S. aureus and a 30% improvement against B. subtilis. It displayed potent inhibitory effects on topoisomerases II (DNA gyrase and topoisomerase IV) as potential molecular targets, with IC50 values of 6.754 and 1.913 µg/mL, respectively, in contrast to Cpx, which had IC50 values of 2.125 and 0.821 µg/mL, respectively. Docking studies further supported these findings, showing that Cpx-Drv exhibited stronger binding interactions with the gyrase enzyme (PDB ID: 2XCT) compared to the parent Cpx, with binding affinities of -10.3349 and -7.7506 kcal/mole, respectively.


Assuntos
Ciprofloxacina , Staphylococcus aureus , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Antibacterianos/química , DNA Girase , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química
20.
Chemosphere ; 344: 140407, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838029

RESUMO

Ciprofloxacin (CIP) is a commonly prescribed fluoroquinolone antibiotic that, even after uptake, remains unmetabolized to a significant extent-over 70%. Unmetabolized CIP is excreted through both urine and feces. This persistent compound manages to evade removal in municipal wastewater facilities, leading to its substantial accumulation in aquatic environments. This accumulation raises concerns about potential risks to the health of various living organisms. Herein, we present a study on the remediation of CIP in synthetic urine by electrochemical oxidation in an undivided cell with a DSA (Ti/IrO2) anode and a stainless-steel cathode. Physisorbed hydroxyl radical formed at the anode surface from water discharge and free chlorine generated from Cl- oxidation were the main oxidizing agents. The effect of pH and current density (j) on CIP degradation was examined, and its total removal was easily achieved at pH ≥ 7.0 and j ≥ 60 mA cm-2 due to the action of free chlorine. The CIP decay always followed a pseudo-first-order kinetics. The components of the synthetic urine were also oxidized. The main nitrogenated species released was NH3. A very small concentration of free chlorine was quantified at the end of the treatment, thus demonstrating the good performance of electrochemical oxidation and its effectiveness to destroy all the organic pollutants. The present study demonstrates the simultaneous oxidation of the organic components of urine during CIP degradation, thus showing a unique perspective for its electrochemical oxidation that enhances the environmental remediation strategies.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/química , Ciprofloxacina/química , Cloro , Oxirredução , Eletrodos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...